
MODEL-BASED DESIGN OF AIR TRAFFIC

CONTROLLER-AUTOMATIONINTERACTION

Stephan Romahn l, Todd J. Callantine 2, and Everett A. Palmer

NASA Ames Research Center

Mail Stop 262-4

Moffett Field, CA 94035-1000, USA

[sromahn, tcallantine, epalmer]@mail.arc.nasa.gov

ABSTRACT

A model of controller and automation activities was

used to design the controller-automation interactions
necessary to implement a new terminal area air traffic
management concept. The model was then used to
design a controller interface that provides the requisite
information and functionality. Using data from a
preliminary study, the Crew Activity Tracking System
(CATS) was used to help validate the model as a
computational tool for describing controller performance.

1. INTRODUCTION

Center-TRACON Autom ation System (CTAS)
CTAS is an air trafficmanagement tool designed to

improve the efficiency of descents, increase aircraft
landing rates, and enhance the air traffic controller's
ability to manage air traffic [5]. One component of
CTAS, the Final Approach Spacing Tool (FAST),

generates an approach sequence for all active runways of a
given airport based on arrival route definitions specific to
the particular terminal area. The approach sequence
generated by FAST is displayed to the controllers to

support their planning tasks. FAST is therefore a
component of information management automation for
controllers, while an aircraft's Flight Management
System (FMS) is control automation for pilots [1].

TAP Program & CTAS/FMS Integration
A CTAS/FMS integration project, part of the

Terminal Area Productivity (TAP) program at NASA
Ames, addresses extensions to the CTAS air traffic

management concept--among them the harmonization of
CTAS and FMS data bases and the use of advanced data

link technology for integrating ground-based CTAS
automation and airborne FMSs.

Under one operational concept for CTAS/FMS
integration, controllers issue charted FMS arrival
clearances that are valid through the runway localizer

intercept. The arrivals can be modified by CTAS to

adapt to the traffic situation. Pilots load these arrivals
and their modifications into the aircraft's FMS. With the

addition of data link technology, controllers can 'uplink'
trajectories optimized for traffic sequencing and spacing
directly to the aircraft's FMS. This could potentially

decrease required communications and help realize
advantages affordedby accurate and efficientFMS-guided

flight in the terminal area.

Model-based Implementation Approach
For controllers and pilots to use this new

functionality effectively, some modifications to existing
ground-based and airborne equipment are anticipated.
This paper focuses on the process of designing a

prototype controller workstation, specifically, the
Planview Graphical User Interface(PGUI) component of
FAST. A model-based approach to design is employed
that starts with a description of the operational scenario.
Based on this description, a task analysis was performed
that identifies and describes the Air Traffic Control

(ATC) tasks involved at three levels of abstraction. At
the lowest level, the task elements are allocated to the
controller or to the automated system (i.e., FAST),

respectively; the model also includes triggering and
terminating conditions for each activity, and descriptions
of the information necessary to support the controllers'
decision-making processes. This task model, however,
focuses on communication and system interaction tasks.
The process of decision making itself is not modeled.

The model was used to develop a prototype of the
controller interface and a set of procedures to operate it.
The actual design of the PGUI entails a number of
additional issues beyond the scope of this paper; instead,
the focus remains on the model-based design process.

Preliminary simulation studies were conducted to
evaluate the concept and the PGUI design. The model
was also cast in a computational form for use with the
Crew Activity Tracking System (CATS) [3, 4]. CATS
used data collected during the preliminary studies to help

1NRC-NASA Ames Research Associate, now with San Jose State University/NASA Ames Research Center

2 San Jose State University/NASA Ames Research Center

refineandvalidatethemodel'sdescriptionof controller
performance,sothatit canbeusedto simulatecontroller
activitiesin the futureasa meansfor evaluatingthe
operationalconceptforairtrafficmanagementscenarios.

2. MODEL OF TERMINAL AREA CONTROLLER
TASKS

Operational Scenario
The operational scenario is based on flights into

Dallas/Fort Worth International airport (DFW),

specifically, flights arriving through the southwest feeder
gate bound for runway 18R (Figure 1). An FMS-
equipped aircraft is used as an example, the scenario
consists of the following sequence of events:

1. The 'Feeder' controller accepts the handoff
from the 'Center' controller figr Sector 62

(see Figure 1).
2. The Feeder controller issues the FMS

arrival clearance to the aircraft.

3. The Feeder controller 'hands off' the flight
to the 'Final' controller for runway 18R

4. The Final controller accepts the handoff.
5. If necessary, the Final controller modifies

the FMS clearance (i.e., adjusts the
location of the base turn to the final

approachheading).
6. The Final controller issues the approach

clearance to the aircraft.
7. The Final controller 'hands off' the aircraft

to the Tower controller.

Additionally, if necessary, a controller can make speed
adjustments to the FMS clearance, or revoke it altogether
and 'vector' the flight (i.e., issue heading, altitude,

and/or speed clearances)at any time during the arrival.
This operational scenario provides the foundation for
investigating operations in which controllers only issue
clearances using voice communication, as well as
combined voice-data link operations in which FMS
trajectory data is exchanged digitally and other clearances
are issued by voice.

/
Figure 1. Operational scenario at DFW, showing
Center, Feeder, and Final airspace sectors, and the

nominal southwest arrival path.

Task Structure

The description of the tasks of the Feeder West 2
controller and the Final controller for runway 18R are
based on the above operational scenario. A three level
task decomposition was deemed suitable for controller
models. It affords a sufficiently detailed analysis of the
tasks and information needs of the controllers to derive

user interface requirements. Figure 2 depicts the top-level
activities of the feeder controller. It provides a general

description of the activity 'flow' for each arriving aircraft.

Monitor
aircraft

Assign Issue
arrival vectors

Handoff
aircraft

Figure 2. Top-level description of feeder controller
activities.

Lower-level task elements, however, can vary with
different situations. Depending on aircraft equipment, or
type of communication (e.g., voice or data link), tasks
may or may not apply to a certain flight. Other tasks
may be performed differently under certain conditions.
Figure 3 illustrates these differences.It decomposes the

high-level activity Assign FMS arrival in two ways. The
left-hand side of the figure depicts a voice-only scenario,
the right-hand side depicts a data link scenario. It is
apparent that the tasks Receive UP1 (i.e., receive user
preference information viadata link) and Formulate FMS
clearance (for a pending uplink) are not performed in a
voice-only scenario. Furthermore, the tasks lssue FMS
clearance and Receive response are performed differently,
depending on whether data link is used. This is taken
into account at the model's lowest level; that is, talk to

pilot and listen to pilot are replaced by controller actions
performed via the PGUI.

3. CONTROLLER-AUTOMATION
INTERACTION DESIGN

Task Allocation
Task elements must be allocated to either the

controller or the FAST system. The primary design
principle for determining the allocation takes into
account the role of FAST as an advisory system: the
ultimate decision about the course of action shall remain
with the controller; and furthermore, the automation shall

not obstruct any action by the controller (e.g., [7]).
Accordingly, the generation of advisories concerning the
runway allocation and the determination of the sequence
number, including the generation of a corresponding
FMS route, is allocated entirely to the automation.

However, the controller always has the option to override
(i.e., ignore) a suggestion from FAST. Whereas issuing

uuzlr mlrle runway

Identlf_ aircraft I
I A.Ig way _]y y j

"N_ Ea,c,te easiqn_nway I1 ._e,.. ,Nooac_ I

I °'term" ea*'nca I-_t De"in" "qo'nca' In..p.r
, _ i_.nt,fr.irc..ft I

i Freeze runway _ Execute free. runway i

_r 1 RscaJvetee_Dack I

i Oetermlne appropriate _--._4ugmrmlmm PM_ ciwirin_ |action for FMS clearance j I u

1
I ISSUe FMS clearance

Receive response

IiIl iO I)110! I

Listen to pilot I

I _ Identify aircraft I

Mark flight __ll

I ReCeive UPI _ Delecl notification IASSESS message I

z4enUfy aircraft II

I Assign,_.way _ , y I
I ._.

L "_ Execute assign runway I

i De'ermines"_"*nca _------t Det"'"' a*_"ca ' Inumber
a _ IdeetI_ aircraft I

J Freezerunway _ m_.cute..m r.nw.y j
_1 BOCSiVO feedblCk Jk l

Determine eppropr ate
act on for FMS c earsnce _ I._(irmulm rmo Gllarancll

• _ Idlnti_ aircraft J

I Formulate FMS clearance J _ _,ompose IINIIll_I I

I _ Identity aircraft J

I ... ,.so,--nca °%.:,7:.Z%,:.,I'
Recllve response

Assess mes_uHe I

I _ ,d.ntiiy aircraft j

Figure 3. Models of the activity Assign FMS arrival. The left-hand side prescribes how the activity should be performed

in a voice-only scenario; the right-hand side shows how the activity should be performed using data link.

the FMS clearance is a task that must be performed by

the controller, the composition of the data link message
in accordance to the FAST advisories can be

accomplished beforehand by the automation.

Table 1. Task allocation example, showing FAST

activities that the controller may choose to override (A

denotes Automation; C denotes Controller).

Task
Receive UPI

Assign runway

Determine sequence # .
Freeze runway

Determine appropriate
action for FMS
clearance
Formulate FMS
clearance

Issue FMS clearance

Receive response

Mark flight

Subtask

Detect notification

Assess message
Determine runway
Identify aircraft

ldenttfy runway

Execute assign runway

Receive feedback

Determine sequence #
Idennfy aircraft
Execute freeze runway

Rccc_':c fccd_ac':
Determine appropriate
action for FMS
clearance

ldentifyaircraft

Compose messa_,e
Identify aircraft
Execute send message
Receive feedback

Detect notification

Assess message
ldentify aircraft
Execute mark flight
Receive feedback

Allocation
A
A

A&C

A (default)
C (override)
A (default)

C (override)
A (default)

C (override)
C

A&C

A
A

A
A
C

Table l describes the task allocation for the activity

Assign FMS arrival in a data link scenario. Italics

indicate activities that FAST can perform; however, in

some cases, the controller may choose to override

advisories from FAST and perform the task differently.

User Interface Specification

After appropriately allocating the prescribed tasks,

the controllers' information needs and the necessary
access to functions were extracted from the model for all

tasks that were allocated to the controller. For example,

with respect to the Assign FMS arrival task, the

following determinations were incorporated into the

design of the PGUI interface:

Displayed information: In order to benefit from the

FAST advisories and to evaluate them, the runway

assignment and the sequence number must be displayed
to the controller. In addition, the controller must receive

appropriate feedbackthat a data link clearance has been

sent and which response has been received.

Access to functionality: The user interface must

allow the controller to override a runway assignment and

to issue a data link FMS arrival clearance.

4. PRELIMINARY STUDY

From the specifications for the user interface derived

from the task analysis and function allocation, a

prototype controller PGUI was developed. In order to

gather subjective feedback from the users and collect

sample data, a preliminary study was conducted in which

controllers used the PGUI prototypes to control

simulated traffic in several situations. For the operational

scenario described previously, groups of two actual air

traffic controllers controlled DFW arrival traffic in the

Feeder West 2 and runway 18R Final airspace sectors,
respectively (see Figure 1).

Data Collection

Several types of data were collected from the
preliminary study, in addition to subjective controller
opinions. Tools used in the CTAS development effortto
simulate air traffic, route communications among CTAS
components, etc.--and the PGUIs themselves--all
produce data. Again owing to the scope of the paper,
these data are described as consisting of three general

types:
State information: Data describing the evolving

state of the controlled air traffic were collected from a

variety of sources. Ofprirnary interest were time-stamped
position and state data for each aircraft in the system,
whether the aircraft was FMS-equipped or not, runway
assignments, and the sequence number generated for each
aircraft by FAST.

Event logs: Data describing controller actions and
cues appearing on the PGUI display were collected as
time-stamped events. These data include feedback of
actions a controller performs using the PGUI interface
(e.g., when a controller issued a data link FMS
clearance), actions performed by another controller
registered on the PGUI display (e.g., an indication to the
Final controller that the Feeder controller wishes to

'hand off" an aircraft), or when aircraft first appears on the
PGUI.

Communication transcripts: Voice communications
that occurred between the controllers and pilots in the

system (available from 'pseudo-aircraft' 'pilots'
--another facet of NASA Ames' simulation support

tools) were transcribed and coded to indicate who
initiated the communication, to whom it was directed,
and its contents. The next section examines how these

three types of data were used as input to CATS in
support of the model-based design process.

5. ROLE OF THE CREW ACTIVITY TRACKING

SYSTEM (CATS)

CATS was designed to supply, in real time,

knowledge required by training and aiding systems, or
enhanced displays [3]. More recent research exploited
these same capabilities to use CATS as a post hoc
analysis tool to support procedure refinement using
simulator data [4]. For these applications, CATS takes
input consisting of the current state of a controlled
system, environmental constraints, and operator actions.
It uses a normative model of operator activities to output
(i) predictions about what activities the operator should
currently be addressing, and (ii) interpretations of actual
operator actions [cf. 6]. To predict activities; CATS first
uses current system state and environmental constraint
information to activate 'context specifiers' [2]. CATS

interprets an operator action either as (i) matching a
prediction, (ii) as supporting the use of an alternative
(but valid) method, or (iii) as a potential error.

The present research seeks to use the CATS
framework differently. In previous applications, CATS
used a normative model validated by domain experts that
prescribes correct activities that operators can undertake
to meet system objectives and uses the model to predict
and interpret operator actions. The present effortseeks to
use the CATS framework to process data that includes
valid operator actions to refine and validate the
descriptive capabilities of the model. There are two main
reasons to pursue such an application. First, a model that
could be used simulate controller performance would be a
valuable tool for conserving scarce and expensive human
air traffic controller subjects while still providing

insights on some key issues (e.g., the pace at which
controllers might issue particular types of clearances
given some volume, sequence, or spacing of arriving air
traffic). Second, the pilot procedures analyzed by CATS
(see [4]) were different from current-day operations, and
therefore a source of confusion warranting analysis, the
sequences of controller activities required here are well-
entrenched-----only the information sources and means of
executing the action are undergoing modification.

The present application necessarily de-emphasizes
portions of the CATS architecture crucial for performing
the processing required in the previous flight deck
applications. Taken as a whole, Figure 4 depicts the
architecture used in previous applications; the grayed-out
portions of Figure 4 indicate those elements that play
little or no role in the present application. Part of the
reason for this concerns the types of knowledge and
corresponding data most salient in the flight deck versus
the ATC domain. For example, the 'state' of the
controlled system is in fact the combination of all states
of the aircraftunder control. And, instead of a dynamic
set of constraints similar to the clearances pilots must
comply with, controller goals/constraints take the form of
general limits on spacing and letters of agreement
between controllers responsible for adjoining sectors.

Descriptive Model of Air Traffic Controller Activities
The manner in which the controller model itself

bears on the operation of CATS hinges primarily on the
representation of conditions for predicting or terminating
an activity; that is, the model still represents correct
activities under normal operating circumstances.
However, previous CATS models relied on a
memoryless specification of context based entirely on
states to predict operator activities before they were
performed. The controller models used here, on the other
hand, frequently represent the context for performing an
activity in terms of events (see [2]). Furthermore, the
model form used here incorporates both predicting and
terminating conditions, often for cognitive, perceptual or
verbal activities (Table 2). Here "prediction" is used in a
descriptive sense--the model predicts not that the
activity will be performed at some point in the future,
but at this particular time. Such an event-based
representation makes sense for capturing interactions such
as the flow of controller-pilot discourse.

Human System I I I"1

Operators _ L

//

- i

[to training or aiding system]

Figure 4. CATS Architecture, showing some of the modifications required for the present
°.

Table 2. Controller model (excerpt)

Task

Determine runway

Identify aircraft

Identify runway

Execute assign

runway
Receive feedback

Determine sequence #

Determine appropriate
action for

FMS clearance

Identify aircraft

Execute send message
Receive feedback

Detect notification

Assess message

Condition for

prediction
idle, a/c before
freeze horizon

runway mismatch
betw, C and A

aircraft identified

runway identified

runway assi_;ned

runway, determined

aircraft equipped.,
aircraft location ok,

traffic situation ok,

a/c not in target state
action determined

aircraft identified

message sent

response received

response detec_d

Condition for

termination

runway
determined

aircraft identified

runway identified

runway assigned

feedback recved

seq. # determined
action determined

aircraft identified

message sent
feedback reeved

response detected

response assessed

As shown in Table 2, the controller model still uses

logical equations of context specifiers to represent the
conditions for predicting and terminating activities.
Likewise, CATS still identifies activities to predict (and,
in this case, terminate) by locating those with 'active'

context specifiers. However, more focus is placed on the
context specifiers for three reasons. First, event-based
specifiers must retain the memory of their activation,
something that was unnecessary in previous CATS

applications; this is shown by the 'stacked' context
specifier list in Figure 4. Second, observable details
about controller actions are actually part of the set of
events that are used to activate the context specifiers
(Table 3).

The third and final reason concerns a larger issue,

viz., CATS is now tracking a distributed system. Up till
now, the paper has referred to the controller model in the
singular, but the CATS implementation actually uses

two models: one for the Feeder controller and one for the

Final controller, as shown by the 'stacked' model in

Figure 4. Furthermore, CATS tracks the progress of each
controller with respect to each aircraft in the system,
and in certain situations (e.g., an aircraft handoff) an
event may activate context specifiers that predicts
activities in both models. Therefore, if the Feeder
controller initiates the handoffof an aircraft, the event

activates a context specifier that is broadcast to both
models; in addition, the context specifierremembers that
it has been activated for that particular aircraft, and will
only activate once, even if the aircraft remains in a
suitable handoff condition for a period of time.

Table 3. Context specifiers (excerpt)

Context specifier
a/e before freeze

horizon

runway determined
aircraft identified

runway identified

runway assigned

feedback received

Definition

sqrt((x-g)(x-g)+

(y-h)(y-h)) > i

not observable

aircraft selected with
cursor device

runway entered into

scratchpad

key pressed

not observable

Data: Source

x,y: a/c state

freeze horizon

(g,h), tolerance

(i): scenario file

callsign: event-log

runway: event-log

rw assignment:

event log

5. RESULTS AND DISCUSSION

The model-based design process described in this
paper has been used to create a prototype user interface for
an ATC application. This process helped to identify the
information needed for the controllers to perform the
tasks within the scope of the model. It also helped to
develop the procedures for operation. However, it does

Eventlogsbycontroller, CATS Interface Log of Activities Predicted or

individual aircraft [_] [......._ [.----- Terminatedby CATS, shown by
, _ [1 State II Controller controller, time, or location
_11 II Data II Mo,:t_ls
xxxx- IIt. II II II
.. III_I_IF _ _t___&___
................. Illll Event[

II!I,
fIll

[" 13:48:26 Voice communication ,/13:48:26 CATS predicts:

I from DAL1706 to Feeder: J Feeder sends message/talks to DAL1706

I Initial contact at FEVER / [issue FMS Arrival clearance]

I 13:48:30 Voice communication /
I from Feeder to DALI706: _3:48:30 CATS determines:
_.leared for FMS arrival _ _ FEVER Feeder issues FMS clearance to DAL1706

Figure 5. Depiction of elements of the CATS interface showing output of task predictions (right)
from the event sequence (left) on the map of the terminal airspace

not--and is not expected to--help to define details of the
user interface implementation, i.e. how information is
being displayed.

A CATS model of the controller tasks is currently being

used to analyze data collected in an initial study. Figure
5 depicts the CATS interface during the interpretation of
the event data. This configuration--which is only one of
many--allows a comparison of CATS' task prediction
against the actual course of controller actions. Predicted
and identified tasks are presented in relation to the
current aircraft position. The results of the CATS
analysis will later be used to refine the task model.

6. OUTLOOK

After the analysis of the data from the initial studies is
completed a revised set of user interface specifications

will be compiled. Data from continuing studies,
conducted as the interface design evolves, will be
similarly analyzed using CATS.

7. REFERENCES

[1] Billings, C. E. (1996). Aviation automation: The
search for a human-centered approach. Hillsdale,
NJ: Erlbaum.

[2] Callantine, T. J. (1998). Cont_t in models of human-
machine systems. Proc_xlings of the 7th

IFAC/"IFIP/IFORS/IEA Symposium on Analksis,
Design and Evaluation of Man-Machine Systems,
Kyoto, Japm

[3] Callmtine, T. J., Mitchell, C. M, and Palma-, E. A.
(1998). GT-CATS: Tracking pilot mode usage
activities in the glass cockpit. International
Journal of Aviation Psychology, submitted _r

publication.
[4] Callmtine, T. J., Palmer, E. A., and Smith, N.

(1997). Model-based crew activity tracking lbr

precision descaat procedure refinerneat.
Proc_.dings of the 1997 IEEE Confo'ence on
Systems, Man, and Cybernetics, Orlando, FL.

[5] Erzberger, H., and Nedell., W. (1988). Design of
automation tools for management of descent
traffic. NASA Technical Memorandum. Moffett

Field, CA: NASA Ames Research Center.
[6] Romahn, S., & Schafer, D. (1995). Automated

classification of pilot errors in flight management
operations. Proceedings of the 6th
IFAC/IFIP/IFORS/IEA Symposium on Analysis,

Design and Evaluation of Man-Machine Systems,
Boston.

[7] Sheridan, T.B. (1988). Task Allocation and
Supervisory Control. In Handbook of Human
Computer Interaction.. M. Helander (Ed.).
Amsterdam: Elsevier.

